Merge lp:~nickpapior/siesta/trunk-kovalp into lp:~kovalp/siesta/siesta

Proposed by Nick Papior
Status: Merged
Merged at revision: 589
Proposed branch: lp:~nickpapior/siesta/trunk-kovalp
Merge into: lp:~kovalp/siesta/siesta
Diff against target: 257 lines (+108/-115)
2 files modified
Docs/siesta.tex (+107/-114)
version.info (+1/-1)
To merge this branch: bzr merge lp:~nickpapior/siesta/trunk-kovalp
Reviewer Review Type Date Requested Status
Petr Koval Approve
Review via email: mp+308922@code.launchpad.net

Description of the change

Manual changes

To post a comment you must log in.
Revision history for this message
Petr Koval (kovalp) :
review: Approve

Preview Diff

[H/L] Next/Prev Comment, [J/K] Next/Prev File, [N/P] Next/Prev Hunk
=== modified file 'Docs/siesta.tex'
--- Docs/siesta.tex 2016-10-20 11:53:53 +0000
+++ Docs/siesta.tex 2016-10-20 12:24:23 +0000
@@ -6775,139 +6775,132 @@
6775\label{SolverPoisson}6775\label{SolverPoisson}
6776\index{Poisson solver}6776\index{Poisson solver}
67776777
6778Poisson equation is solved within SIESTA 6778Poisson equation is solved within SIESTA in order to compute a Hartree
6779in order to compute a Hartree potential 6779potential
6780
6781\begin{equation}6780\begin{equation}
6782\label{vh-def}6781 \label{vh-def}
6783V_{\mathrm{H}}(\mathbf{r}) = \iiint 6782 V_{\mathrm{H}}(\mathbf{r}) = \iiint
6784\frac{\rho(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|} d^3r'6783 \frac{\rho(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|} d^3r'
6785\end{equation}6784\end{equation}
6786for a given electric charge density $\rho(\mathbf{r})$.6785for a given electric charge density $\rho(\mathbf{r})$.
67876786
6788In momentum space, the Hartree potential becomes diagonal 6787In momentum space, the Hartree potential becomes diagonal
6789\begin{equation}6788\begin{equation}
6790\label{vh-g}6789 \label{vh-g}
6791V_{\mathrm{H}}(\mathbf{p}) = \frac{4\pi}{p^2}\, \rho(\mathbf{p}),6790 V_{\mathrm{H}}(\mathbf{p}) = \frac{4\pi}{p^2}\, \rho(\mathbf{p}),
6792\end{equation}6791\end{equation}
6793and this is the computationally cheapest method of calculating 6792and this is the computationally cheapest method of calculating the
6794the potential. For instance, in case of periodic boundary6793potential. For instance, in case of periodic boundary conditions
6795conditions (PBC), the potential in real space is given by a 6794(PBC), the potential in real space is given by a Fourier sum
6796Fourier sum6795
67976796\begin{equation}
6798\begin{equation}6797 \label{vh-r}
6799\label{vh-r}6798 V_{\mathrm{H}}(\mathbf{r}) = \sum_{\mathbf{G}}
6800V_{\mathrm{H}}(\mathbf{r}) = \sum_{\mathbf{G}} 6799 \mathrm{e}^{\mathrm{i}\mathbf{Gr}} 4\pi G^{-2} \rho(\mathbf{G}),
6801\mathrm{e}^{\mathrm{i}\mathbf{Gr}} 4\pi G^{-2} \rho(\mathbf{G}),6800\end{equation}
6802\end{equation}6801where $\rho(\mathbf{G})$ is the electric charge density in momentum
6803where $\rho(\mathbf{G})$ is the electric charge density in momentum space 6802space
6804\begin{equation}6803\begin{equation}
6805\label{rho-g}6804 \label{rho-g}
6806\rho(\mathbf{G}) = \frac{1}{(2 \pi)^3}\sum_{\mathbf{R}} 6805 \rho(\mathbf{G}) = \frac{1}{(2 \pi)^3}\sum_{\mathbf{R}}
6807\mathrm{e}^{-\mathrm{i}\mathbf{GR}} \rho(\mathbf{R}).6806 \mathrm{e}^{-\mathrm{i}\mathbf{GR}} \rho(\mathbf{R}).
6808\end{equation}6807\end{equation}
6809The summations in equations (\ref{vh-r}) and (\ref{rho-g})6808The summations in equations \eqref{vh-r} and \eqref{rho-g} are going
6810are going over the multiples of unit cell vectors in momentum- 6809over the multiples of unit cell vectors in momentum-$\mathbf{G}$ and
6811$\mathbf{G}$ and coordinate- $\mathbf{R}$ space correspondingly.6810coordinate-$\mathbf{R}$ space correspondingly. The Fourier transforms
6812The Fourier transforms in equations (\ref{vh-r}) and (\ref{rho-g})6811in equations \eqref{vh-r} and \eqref{rho-g} can be accelerated by fast
6813can be accelerated by fast Fourier transforms (FFT), leading 6812Fourier transforms (FFT), leading to an low-complexity algorithm
6814to an low-complexity algorithm ($O(N)$, where $N$ is number of 6813($O(N)$, where $N$ is number of points on the grid). In SIESTA, only
6815points on the grid). In SIESTA, only this FFT-accelerated6814this FFT-accelerated method is originally implemented. It is used also
6816method is originally implemented. It is used also for 6815for slabs, chains and molecules with success because, within
6817slabs, chains and molecules with success because, within 6816self-consistent field loop, the method is applied for (almost) neutral
6818self-consistent field loop, the method6817charge distributions, i.e. for electric charge densities given by the
6819is applied for (almost) neutral charge distributions, i.~e.6818density of electrons $n_{\mathrm{e}}(\mathbf{r})$ and the density of
6820for electric charge densities given by the density of 6819atomic cores $n_{\mathrm{a}}(\mathbf{r})$
6821electrons $n_{\mathrm{e}}(\mathbf{r})$6820\begin{equation}
6822and the density of atomic cores $n_{\mathrm{a}}(\mathbf{r})$6821 \rho(\mathbf{r}) = n_{\mathrm{e}}(\mathbf{r}) + n_{\mathrm{a}}(\mathbf{r}).
6823$$\rho(\mathbf{r}) = n_{\mathrm{e}}(\mathbf{r}) + n_{\mathrm{a}}(\mathbf{r}).$$6822\end{equation}
68246823
6825However, this approach may fail to give sufficient accuracy 6824However, this approach may fail to give sufficient accuracy for
6826for systems with reduced dimensionality. There is a work around 6825systems with reduced dimensionality. There is a work around in the
6827in the form of some cutoffs in momentum space as summarized 6826form of some cutoffs in momentum space as summarized nicely by Rozzi
6828nicely by Rozzi \textit{etal} \cite{Rozzi:2006}.6827\textit{etal} \cite{Rozzi:2006}. For instance, for the case of
6829For instance, for the case of molecules, i.e. for open boundary6828molecules, i.e. for open boundary conditions (OBC), it is sufficient
6830conditions (OBC), it is sufficient6829to modify the Hartree potential in momentum space \eqref{vh-g}
6831to modify the Hartree potential in momentum space (\ref{vh-g}) 6830\begin{equation}
68326831 \label{vh-r-0d}
6833\begin{equation}6832 V_{\mathrm{H}}(\mathbf{G}) = V_{\mathrm{C}}(G)\, \rho(\mathbf{G})
6834\label{vh-r-0d}6833 [1-\cos(\alpha R G)],
6835V_{\mathrm{H}}(\mathbf{G}) = V_{\mathrm{C}}(G)\, \rho(\mathbf{G})6834\end{equation}
6836[1-\cos(\alpha R G)],6835where $\alpha$ is a parameter $R=(3 V_{\mathrm{box}}/(4\pi))^{1/3}$
6837\end{equation}6836and
6838where $\alpha$ is a parameter 6837\begin{equation}
6839$R=(3 V_{\mathrm{box}}/(4\pi))^{1/3}$ and 6838 \label{vg-0d}
6840\begin{equation}6839 V_{\mathrm{C}}(G) =
6841\label{vg-0d}6840 \begin{cases}
6842V_{\mathrm{C}}(G) = 6841 4\pi G^{-2}, \text{ if } G\ne 0; \\
6843\begin{cases}6842 2\pi\alpha R, \text{ if } G=0.
68444\pi G^{-2}, \text{ if } G\ne 0; \\6843 \end{cases}
68452\pi\alpha R, \text{ if } G=0.6844\end{equation}
6846\end{cases}6845
6847\end{equation}6846The other approach to compute the Hartree potential \eqref{vh-def}
68486847directly on a real-space grid, but for the coordinates situated in the
6849The other approach to compute the Hartree potential (\ref{vh-def})6848middle of the discretization cells and subsequently to interpolate the
6850directly on a real-space grid, but for the coordinates6849potential to the input grid-points. This approach has an advantage of
6851situated in the middle of the discretization cells and 6850not introducing additional parameters. Moreover, if we notify that the
6852subsequently to interpolate the potential to the input grid-points.6851potential \eqref{vh-def} is a (3-dimensional) convolution, then we can
6853This approach has an advantage of not introducing additional6852accelerate this with FFT in such a way that there is no aliasing
6854parameters. Moreover, if we notify that the potential 6853affects (i.e. we avoid cyclic convolutions by a suitable padding of
6855(\ref{vh-def}) is a (3-dimensional) convolution, then we can accelerate 6854data arrays).
6856this with FFT in such a way that there is no aliasing affects
6857(i.e. we avoid cyclic convolutions by a suitable padding
6858of data arrays).
68596855
6860In order to define a framework for using different Poisson solvers,6856In order to define a framework for using different Poisson solvers,
6861there is an option \textbf{Poisson.Type} as described below6857there is an option \fdf{Poisson.Type} as described below
6862 6858
6863\begin{fdfentry}{Poisson!Type}[string]<\fdfvalue{PBC}>6859\begin{fdfentry}{Poisson!Type}[string]<\fdfvalue{PBC}>
68646860
6865 Define the type of Poisson solver to use.6861 Define the type of Poisson solver to use.
68666862
6867\begin{itemize}6863 \begin{fdfoptions}
6868\item \fdfvalue{PBC} (\textit{default})6864
6869This is original SIESTA solver for periodic systems, i.e.6865 \option[PBC] %
6870for periodic boundary conditions in all three dimensions. 6866 This is original SIESTA solver for periodic systems, i.e. for
6871The solver realizes the equation (\ref{vh-r}).6867 periodic boundary conditions in all three dimensions. The solver
68726868 realizes the equation \eqref{vh-r}.
6873\item \fdfvalue{PBC.Cutoff0D}6869
6874This is a realization of 0D cutoff in periodic systems, given 6870 \option[PBC.Cutoff0D] %
6875by equations (\ref{vh-r-0d}) and (\ref{vg-0d})6871 This is a realization of 0D cutoff in periodic systems, given by
6876(see Rozzi \textit{etal} \cite{Rozzi:2006}).6872 equations \eqref{vh-r-0d} and \eqref{vg-0d} (see Rozzi
68776873 \textit{etal} \cite{Rozzi:2006}).
6878\item \fdfvalue{OBC.6Loop}6874
6879This is a reference calculation with a 6-folded loop,6875 \option[OBC.6Loop] %
6880directly computing the Hartree potential (\ref{vh-def})6876 This is a reference calculation with a 6-folded loop, directly
6881for open boundary conditions (for atoms, molecules, clusters etc)6877 computing the Hartree potential \eqref{vh-def} for open boundary
6882in real space.6878 conditions (for atoms, molecules, clusters etc.) in real space.
6883The potential is computed in the middle of discretisation cells6879 The potential is computed in the middle of discretisation cells
6884and is subsequently interpolated back to the points on which 6880 and is subsequently interpolated back to the points on which the
6885the density is given. It is a slow algorithm and can be practically 6881 density is given. It is a slow algorithm and can be practically
6886used only for small systems.6882 used only for small systems.
68876883
6888\item \fdfvalue{OBC.FastConv}6884 \option[OBC.FastConv] %
6889FFT accelerated calculation of Hartree potential 6885 FFT accelerated calculation of Hartree potential in real
6890in real space. The results of this option should be 6886 space. The results of this option should be equivalent to the
6891equivalent to the option \fdfvalue{OBC.6Loop} 6887 option \fdfvalue{OBC.6Loop} up to the machine precision.
6892up to the machine precision.6888
68936889 \option[OBC.Check] %
6894\item \fdfvalue{OBC.Check}6890 This option is to realize a cross check of the results delivered
6895This option is to realize a cross check of the 6891 by options \fdfvalue{OBC.6Loop} and \fdfvalue{OBC.FastConv}. It
6896results delivered by options \fdfvalue{OBC.6Loop}6892 invokes both algorithms and compares results.
6897and \fdfvalue{OBC.FastConv}. It invokes both algorithms6893
6898and compares results.6894 \end{fdfoptions}
6899
6900\end{itemize}
69016895
6902\end{fdfentry}6896\end{fdfentry}
69036897
69046898
6905\begin{fdfentry}{Poisson!alpha}[real]<\fdfvalue{1.0}>6899\begin{fdfentry}{Poisson!alpha}[real]<\fdfvalue{1.0}>
69066900
6907This parameter defines the constant $\alpha$ in the 6901 This parameter defines the constant $\alpha$ in the
6908equations (\ref{vh-r-0d}) and (\ref{vg-0d}). It is 6902 equations \eqref{vh-r-0d} and \eqref{vg-0d}. It is
6909effective only if \fdfvalue{Poisson.Type = PBC.Cutoff0D}.6903 effective only if \fdf*{Poisson.Type PBC.Cutoff0D}.
6910
69116904
6912\end{fdfentry}6905\end{fdfentry}
69136906
69146907
=== modified file 'version.info'
--- version.info 2016-10-11 19:50:15 +0000
+++ version.info 2016-10-20 12:24:23 +0000
@@ -1,1 +1,1 @@
1trunk-5721trunk-572--kovalp-manual-1

Subscribers

People subscribed via source and target branches

to all changes: