Merge lp:~nickpapior/siesta/trunk-kovalp into lp:~kovalp/siesta/siesta

Proposed by Nick Papior
Status: Merged
Merged at revision: 589
Proposed branch: lp:~nickpapior/siesta/trunk-kovalp
Merge into: lp:~kovalp/siesta/siesta
Diff against target: 257 lines (+108/-115)
2 files modified
Docs/siesta.tex (+107/-114)
version.info (+1/-1)
To merge this branch: bzr merge lp:~nickpapior/siesta/trunk-kovalp
Reviewer Review Type Date Requested Status
Petr Koval Approve
Review via email: mp+308922@code.launchpad.net

Description of the change

Manual changes

To post a comment you must log in.
Revision history for this message
Petr Koval (kovalp) :
review: Approve

Preview Diff

[H/L] Next/Prev Comment, [J/K] Next/Prev File, [N/P] Next/Prev Hunk
1=== modified file 'Docs/siesta.tex'
2--- Docs/siesta.tex 2016-10-20 11:53:53 +0000
3+++ Docs/siesta.tex 2016-10-20 12:24:23 +0000
4@@ -6775,139 +6775,132 @@
5 \label{SolverPoisson}
6 \index{Poisson solver}
7
8-Poisson equation is solved within SIESTA
9-in order to compute a Hartree potential
10-
11+Poisson equation is solved within SIESTA in order to compute a Hartree
12+potential
13 \begin{equation}
14-\label{vh-def}
15-V_{\mathrm{H}}(\mathbf{r}) = \iiint
16-\frac{\rho(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|} d^3r'
17+ \label{vh-def}
18+ V_{\mathrm{H}}(\mathbf{r}) = \iiint
19+ \frac{\rho(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|} d^3r'
20 \end{equation}
21 for a given electric charge density $\rho(\mathbf{r})$.
22
23 In momentum space, the Hartree potential becomes diagonal
24 \begin{equation}
25-\label{vh-g}
26-V_{\mathrm{H}}(\mathbf{p}) = \frac{4\pi}{p^2}\, \rho(\mathbf{p}),
27-\end{equation}
28-and this is the computationally cheapest method of calculating
29-the potential. For instance, in case of periodic boundary
30-conditions (PBC), the potential in real space is given by a
31-Fourier sum
32-
33-\begin{equation}
34-\label{vh-r}
35-V_{\mathrm{H}}(\mathbf{r}) = \sum_{\mathbf{G}}
36-\mathrm{e}^{\mathrm{i}\mathbf{Gr}} 4\pi G^{-2} \rho(\mathbf{G}),
37-\end{equation}
38-where $\rho(\mathbf{G})$ is the electric charge density in momentum space
39-\begin{equation}
40-\label{rho-g}
41-\rho(\mathbf{G}) = \frac{1}{(2 \pi)^3}\sum_{\mathbf{R}}
42-\mathrm{e}^{-\mathrm{i}\mathbf{GR}} \rho(\mathbf{R}).
43-\end{equation}
44-The summations in equations (\ref{vh-r}) and (\ref{rho-g})
45-are going over the multiples of unit cell vectors in momentum-
46-$\mathbf{G}$ and coordinate- $\mathbf{R}$ space correspondingly.
47-The Fourier transforms in equations (\ref{vh-r}) and (\ref{rho-g})
48-can be accelerated by fast Fourier transforms (FFT), leading
49-to an low-complexity algorithm ($O(N)$, where $N$ is number of
50-points on the grid). In SIESTA, only this FFT-accelerated
51-method is originally implemented. It is used also for
52-slabs, chains and molecules with success because, within
53-self-consistent field loop, the method
54-is applied for (almost) neutral charge distributions, i.~e.
55-for electric charge densities given by the density of
56-electrons $n_{\mathrm{e}}(\mathbf{r})$
57-and the density of atomic cores $n_{\mathrm{a}}(\mathbf{r})$
58-$$\rho(\mathbf{r}) = n_{\mathrm{e}}(\mathbf{r}) + n_{\mathrm{a}}(\mathbf{r}).$$
59-
60-However, this approach may fail to give sufficient accuracy
61-for systems with reduced dimensionality. There is a work around
62-in the form of some cutoffs in momentum space as summarized
63-nicely by Rozzi \textit{etal} \cite{Rozzi:2006}.
64-For instance, for the case of molecules, i.e. for open boundary
65-conditions (OBC), it is sufficient
66-to modify the Hartree potential in momentum space (\ref{vh-g})
67-
68-\begin{equation}
69-\label{vh-r-0d}
70-V_{\mathrm{H}}(\mathbf{G}) = V_{\mathrm{C}}(G)\, \rho(\mathbf{G})
71-[1-\cos(\alpha R G)],
72-\end{equation}
73-where $\alpha$ is a parameter
74-$R=(3 V_{\mathrm{box}}/(4\pi))^{1/3}$ and
75-\begin{equation}
76-\label{vg-0d}
77-V_{\mathrm{C}}(G) =
78-\begin{cases}
79-4\pi G^{-2}, \text{ if } G\ne 0; \\
80-2\pi\alpha R, \text{ if } G=0.
81-\end{cases}
82-\end{equation}
83-
84-The other approach to compute the Hartree potential (\ref{vh-def})
85-directly on a real-space grid, but for the coordinates
86-situated in the middle of the discretization cells and
87-subsequently to interpolate the potential to the input grid-points.
88-This approach has an advantage of not introducing additional
89-parameters. Moreover, if we notify that the potential
90-(\ref{vh-def}) is a (3-dimensional) convolution, then we can accelerate
91-this with FFT in such a way that there is no aliasing affects
92-(i.e. we avoid cyclic convolutions by a suitable padding
93-of data arrays).
94+ \label{vh-g}
95+ V_{\mathrm{H}}(\mathbf{p}) = \frac{4\pi}{p^2}\, \rho(\mathbf{p}),
96+\end{equation}
97+and this is the computationally cheapest method of calculating the
98+potential. For instance, in case of periodic boundary conditions
99+(PBC), the potential in real space is given by a Fourier sum
100+
101+\begin{equation}
102+ \label{vh-r}
103+ V_{\mathrm{H}}(\mathbf{r}) = \sum_{\mathbf{G}}
104+ \mathrm{e}^{\mathrm{i}\mathbf{Gr}} 4\pi G^{-2} \rho(\mathbf{G}),
105+\end{equation}
106+where $\rho(\mathbf{G})$ is the electric charge density in momentum
107+space
108+\begin{equation}
109+ \label{rho-g}
110+ \rho(\mathbf{G}) = \frac{1}{(2 \pi)^3}\sum_{\mathbf{R}}
111+ \mathrm{e}^{-\mathrm{i}\mathbf{GR}} \rho(\mathbf{R}).
112+\end{equation}
113+The summations in equations \eqref{vh-r} and \eqref{rho-g} are going
114+over the multiples of unit cell vectors in momentum-$\mathbf{G}$ and
115+coordinate-$\mathbf{R}$ space correspondingly. The Fourier transforms
116+in equations \eqref{vh-r} and \eqref{rho-g} can be accelerated by fast
117+Fourier transforms (FFT), leading to an low-complexity algorithm
118+($O(N)$, where $N$ is number of points on the grid). In SIESTA, only
119+this FFT-accelerated method is originally implemented. It is used also
120+for slabs, chains and molecules with success because, within
121+self-consistent field loop, the method is applied for (almost) neutral
122+charge distributions, i.e. for electric charge densities given by the
123+density of electrons $n_{\mathrm{e}}(\mathbf{r})$ and the density of
124+atomic cores $n_{\mathrm{a}}(\mathbf{r})$
125+\begin{equation}
126+ \rho(\mathbf{r}) = n_{\mathrm{e}}(\mathbf{r}) + n_{\mathrm{a}}(\mathbf{r}).
127+\end{equation}
128+
129+However, this approach may fail to give sufficient accuracy for
130+systems with reduced dimensionality. There is a work around in the
131+form of some cutoffs in momentum space as summarized nicely by Rozzi
132+\textit{etal} \cite{Rozzi:2006}. For instance, for the case of
133+molecules, i.e. for open boundary conditions (OBC), it is sufficient
134+to modify the Hartree potential in momentum space \eqref{vh-g}
135+\begin{equation}
136+ \label{vh-r-0d}
137+ V_{\mathrm{H}}(\mathbf{G}) = V_{\mathrm{C}}(G)\, \rho(\mathbf{G})
138+ [1-\cos(\alpha R G)],
139+\end{equation}
140+where $\alpha$ is a parameter $R=(3 V_{\mathrm{box}}/(4\pi))^{1/3}$
141+and
142+\begin{equation}
143+ \label{vg-0d}
144+ V_{\mathrm{C}}(G) =
145+ \begin{cases}
146+ 4\pi G^{-2}, \text{ if } G\ne 0; \\
147+ 2\pi\alpha R, \text{ if } G=0.
148+ \end{cases}
149+\end{equation}
150+
151+The other approach to compute the Hartree potential \eqref{vh-def}
152+directly on a real-space grid, but for the coordinates situated in the
153+middle of the discretization cells and subsequently to interpolate the
154+potential to the input grid-points. This approach has an advantage of
155+not introducing additional parameters. Moreover, if we notify that the
156+potential \eqref{vh-def} is a (3-dimensional) convolution, then we can
157+accelerate this with FFT in such a way that there is no aliasing
158+affects (i.e. we avoid cyclic convolutions by a suitable padding of
159+data arrays).
160
161 In order to define a framework for using different Poisson solvers,
162-there is an option \textbf{Poisson.Type} as described below
163+there is an option \fdf{Poisson.Type} as described below
164
165 \begin{fdfentry}{Poisson!Type}[string]<\fdfvalue{PBC}>
166
167 Define the type of Poisson solver to use.
168
169-\begin{itemize}
170-\item \fdfvalue{PBC} (\textit{default})
171-This is original SIESTA solver for periodic systems, i.e.
172-for periodic boundary conditions in all three dimensions.
173-The solver realizes the equation (\ref{vh-r}).
174-
175-\item \fdfvalue{PBC.Cutoff0D}
176-This is a realization of 0D cutoff in periodic systems, given
177-by equations (\ref{vh-r-0d}) and (\ref{vg-0d})
178-(see Rozzi \textit{etal} \cite{Rozzi:2006}).
179-
180-\item \fdfvalue{OBC.6Loop}
181-This is a reference calculation with a 6-folded loop,
182-directly computing the Hartree potential (\ref{vh-def})
183-for open boundary conditions (for atoms, molecules, clusters etc)
184-in real space.
185-The potential is computed in the middle of discretisation cells
186-and is subsequently interpolated back to the points on which
187-the density is given. It is a slow algorithm and can be practically
188-used only for small systems.
189-
190-\item \fdfvalue{OBC.FastConv}
191-FFT accelerated calculation of Hartree potential
192-in real space. The results of this option should be
193-equivalent to the option \fdfvalue{OBC.6Loop}
194-up to the machine precision.
195-
196-\item \fdfvalue{OBC.Check}
197-This option is to realize a cross check of the
198-results delivered by options \fdfvalue{OBC.6Loop}
199-and \fdfvalue{OBC.FastConv}. It invokes both algorithms
200-and compares results.
201-
202-\end{itemize}
203+ \begin{fdfoptions}
204+
205+ \option[PBC] %
206+ This is original SIESTA solver for periodic systems, i.e. for
207+ periodic boundary conditions in all three dimensions. The solver
208+ realizes the equation \eqref{vh-r}.
209+
210+ \option[PBC.Cutoff0D] %
211+ This is a realization of 0D cutoff in periodic systems, given by
212+ equations \eqref{vh-r-0d} and \eqref{vg-0d} (see Rozzi
213+ \textit{etal} \cite{Rozzi:2006}).
214+
215+ \option[OBC.6Loop] %
216+ This is a reference calculation with a 6-folded loop, directly
217+ computing the Hartree potential \eqref{vh-def} for open boundary
218+ conditions (for atoms, molecules, clusters etc.) in real space.
219+ The potential is computed in the middle of discretisation cells
220+ and is subsequently interpolated back to the points on which the
221+ density is given. It is a slow algorithm and can be practically
222+ used only for small systems.
223+
224+ \option[OBC.FastConv] %
225+ FFT accelerated calculation of Hartree potential in real
226+ space. The results of this option should be equivalent to the
227+ option \fdfvalue{OBC.6Loop} up to the machine precision.
228+
229+ \option[OBC.Check] %
230+ This option is to realize a cross check of the results delivered
231+ by options \fdfvalue{OBC.6Loop} and \fdfvalue{OBC.FastConv}. It
232+ invokes both algorithms and compares results.
233+
234+ \end{fdfoptions}
235
236 \end{fdfentry}
237
238
239 \begin{fdfentry}{Poisson!alpha}[real]<\fdfvalue{1.0}>
240
241-This parameter defines the constant $\alpha$ in the
242-equations (\ref{vh-r-0d}) and (\ref{vg-0d}). It is
243-effective only if \fdfvalue{Poisson.Type = PBC.Cutoff0D}.
244-
245+ This parameter defines the constant $\alpha$ in the
246+ equations \eqref{vh-r-0d} and \eqref{vg-0d}. It is
247+ effective only if \fdf*{Poisson.Type PBC.Cutoff0D}.
248
249 \end{fdfentry}
250
251
252=== modified file 'version.info'
253--- version.info 2016-10-11 19:50:15 +0000
254+++ version.info 2016-10-20 12:24:23 +0000
255@@ -1,1 +1,1 @@
256-trunk-572
257+trunk-572--kovalp-manual-1

Subscribers

People subscribed via source and target branches

to all changes: