Merge lp:~meg-simula/fenics-book/index-fixes into lp:fenics-book

Proposed by Marie Rognes
Status: Merged
Merged at revision: 1023
Proposed branch: lp:~meg-simula/fenics-book/index-fixes
Merge into: lp:fenics-book
Diff against target: 279 lines (+46/-1)
3 files modified
tex/3.tex (+21/-0)
tex/31.tex (+15/-0)
tex/36.tex (+10/-1)
To merge this branch: bzr merge lp:~meg-simula/fenics-book/index-fixes
Reviewer Review Type Date Requested Status
Registry Administrators Pending
Review via email: mp+79629@code.launchpad.net
To post a comment you must log in.

Preview Diff

[H/L] Next/Prev Comment, [J/K] Next/Prev File, [N/P] Next/Prev Hunk
1=== modified file 'tex/3.tex'
2--- tex/3.tex 2011-10-17 21:29:59 +0000
3+++ tex/3.tex 2011-10-17 22:23:24 +0000
4@@ -48,6 +48,7 @@
5 determining a polynomial based on interpolation of function values and
6 derivatives at a set of points was also discussed in
7 \citet{BrambleZlamal1970}, although the term unisolvence was not used.
8+\index{unisolvence}
9
10 For any finite element, one may define a local basis for
11 $\CiarletSpace$ that is dual to the degrees of freedom. Such a basis
12@@ -55,6 +56,7 @@
13 \phi^T_j ) = \delta_{ij} $ for $1 \leqslant i,j \leqslant n $ and is called
14 the \emph{nodal basis}. It is typically this basis that is used in
15 finite element computations.
16+\index{nodal basis}
17
18 Also associated with a finite element is a \emph{local interpolation
19 operator}, sometimes called a \emph{nodal interpolant}. Given some
20@@ -89,6 +91,8 @@
21 $\hat{\ell} \in \hat{\CiarletSpace}'$, its \emph{pushforward} acts on
22 a function in $v \in \CiarletSpace$ by $\mathcal{F}_*(\hat{\ell})(v) =
23 \hat{\ell}(\mathcal{F}^*(v))$.
24+\index{affine equivalence}
25+
26 %%
27 \begin{definition}[Affine equivalence]
28 Let $(\hat{T}, \hat{\CiarletSpace}, \hat{\mathcal{L}})$ and
29@@ -141,6 +145,7 @@
30 %------------------------------------------------------------------------------
31 \section{Notation}
32
33+\index{degrees of freedom}
34 \begin{itemize}
35 \item
36 The space of polynomials of degree up to and including $q$ on a
37@@ -246,6 +251,7 @@
38
39 \vspace*{7pt}
40 \subsection{The Lagrange element}
41+\index{Finite element!Lagrange}
42
43 The best-known and most widely used finite element is the $\Poly{1}$
44 Lagrange element. This lowest-degree triangle is sometimes called the
45@@ -335,6 +341,7 @@
46 by using a Lagrange element for each component.
47
48 \subsection{The Crouzeix--Raviart element}
49+\index{Finite element!Crouzeix--Raviart}
50
51 {The Crouzeix--Raviart element was introduced in
52 \citet{CrouzeixRaviart1973} as a technique for solving the stationary
53@@ -442,6 +449,7 @@
54
55 \vspace*{-6pt}\subsection{The Raviart--Thomas element}
56 \label{sec:raviartthomas}
57+\index{Finite element!Raviart--Thomas}
58
59 The Raviart--Thomas element was introduced
60 by \citet{RaviartThomas1977}. It was the first element to discretize
61@@ -556,6 +564,7 @@
62
63 %------------------------------------------------------------------------------
64 \subsection{The Brezzi--Douglas--Marini element}
65+\index{Finite element!Brezzi--Douglas--Marini}
66
67 The Brezzi--Douglas--Marini element was introduced by Brezzi,
68 Douglas and Marini in two dimensions (for triangles) in
69@@ -622,6 +631,7 @@
70 in \citet{BrezziDouglasMarini1985a}.
71
72 \subsection{The Mardal-Tai-Winther element}
73+\index{Finite element!Mardal--Tai--Winther}
74
75 The Mardal--Tai--Winther element was introduced
76 in \citet{MardalTaiWinther2002} as a finite element suitable for the
77@@ -678,6 +688,7 @@
78 \end{equation}
79
80 \subsection{The Arnold--Winther element}
81+\index{Finite element!Arnold--Winther}
82
83 The Arnold--Winther element was introduced
84 by \citet{ArnoldWinther2002}. This paper presented the first stable
85@@ -785,6 +796,7 @@
86
87 %------------------------------------------------------------------------------
88 \subsection{The \nedelec{} $\Hcurl$ element of the first kind}
89+\index{Finite element!N\'ed\'elec}
90 \label{sec:nedelec:first}
91
92 \begin{definition}[\nedelec{} $\Hcurl$ element of the first kind]
93@@ -869,6 +881,7 @@
94
95 \subsection{The $\Hcurl$ \nedelec{} element of the second kind}
96 \label{sec:nedelec:second}
97+\index{Finite element!N\'ed\'elec}
98
99 \begin{definition}[\nedelec{} $\Hcurl$ element of the second kind]
100 The \nedelec{} element of the second kind ($\mathrm{NED}^2_q$) is
101@@ -963,6 +976,7 @@
102 an increased opportunity for parallelism and $hp$-adaptivity.
103
104 \subsection{Discontinuous Lagrange}
105+\index{Finite element!Discontinuous Lagrange}
106
107 \begin{definition}[Discontinuous Lagrange element]
108 The discontinuous Lagrange element ($\mathrm{DG}_q$)
109@@ -1052,6 +1066,7 @@
110
111
112 \subsection{The Argyris element}
113+\index{Finite element!Argyris}
114
115 The Argyris element \citep{ArgyrisFriedScharpf1968,Ciarlet2002} is
116 based on the space $\Poly{5}(T)$ of quintic polynomials over some triangle
117@@ -1113,6 +1128,7 @@
118 continuity at the vertices \citep{SolinSegethDolevzel2004}.
119
120 \subsection{The Hermite element}
121+\index{Finite element!Hermite}
122
123 \looseness-1{}The Hermite element generalizes the classic cubic Hermite
124 interpolating polynomials on the line segment
125@@ -1182,6 +1198,7 @@
126
127
128 \subsection{The Morley element}
129+\index{Finite element!Morley}
130
131 The Morley triangle defined in \citet{Morley1968} is a simple
132 $H^2$-nonconforming quadratic element that is used in fourth-degree
133@@ -1264,6 +1281,8 @@
134 Raviart--Thomas element enriched by the curl of the cubic bubble
135 element \citep{ArnoldBrezziDouglas1984}.
136
137+\index{Finite element!Bubble elements}
138+
139 \begin{definition}[Bubble element]
140 The bubble element ($B_q$) is defined for $q \geqslant (d+1)$ by
141 \begin{align}
142@@ -1296,6 +1315,8 @@
143
144 %------------------------------------------------------------------------------
145 \section{Finite element exterior calculus}
146+\index{finite element exterior calculus}
147+
148 It has recently been demonstrated that many of the finite elements
149 that have been discovered or invented over the years can be formulated
150 and analyzed in a common unifying framework as special cases of a more
151
152=== modified file 'tex/31.tex'
153--- tex/31.tex 2011-10-17 18:35:28 +0000
154+++ tex/31.tex 2011-10-17 22:23:24 +0000
155@@ -4,6 +4,8 @@
156 {Lyudmyla Vynnytska, Stuart R.~Clark and Marie E.~Rognes}
157 {vynnytska}
158
159+\index{mantle convection}
160+
161 In this chapter, we model dynamic convection processes in the Earth's
162 mantle; linking the geodynamical equations, numerical implementation and
163 Python code tightly together. The convection of material is generated by
164@@ -124,6 +126,7 @@
165 are nondimensional; scaling and physical constants are presented in
166 Section~\ref{vynnytska:sec:results}.
167
168+\index{Rayleigh number}
169 The Rayleigh numbers measure the relative importance of buoyancy to
170 thermal and viscous dissipation given by
171 thermal diffusivity ($k_{th}$) and the reference viscosity ($\eta_0$),
172@@ -142,6 +145,8 @@
173 within the ranges for the Earth \citep{MontagueKelloggManga1998} and
174 such that fluid convection dominates.
175
176+\index{advection-diffusion equation}
177+
178 The mantle flow induces transport of the composition $\phi$. This
179 transport is governed by the equation
180 \begin{equation}
181@@ -252,6 +257,7 @@
182
183
184 \subsection{Mixed finite element formulation of the Stokes equations}
185+\index{Stokes equations!mixed finite element discretization}
186
187 Let $\mathcal{T}_h = \{T\}$ be a mesh\footnote{Note that $T$ is used
188 to denote an element (cell) in a mesh in this section, in addition to
189@@ -287,6 +293,8 @@
190 \enlargethispage{12pt}
191
192 \vspace*{-6pt}\subsection{Discontinuous Galerkin formulation of advection--diffusion equations}
193+\index{discontinuous Galerkin}
194+\index{advection-diffusion equation!discontinuous Galerkin discretization}
195
196 The energy and transport equations~\eqref{vynnytska:eq:energy}
197 and~\eqref{vynnytska:eq:transdif} have the same structure from the
198@@ -376,6 +384,8 @@
199
200 \subsection{A decoupling predictor-corrector scheme}
201
202+\index{predictor-corrector scheme}
203+
204 Instead of solving the fully coupled nonlinear system of equations
205 defined
206 by~\eqref{vynnytska:eq:momentum}~--~\eqref{vynnytska:eq:incompress},
207@@ -468,6 +478,8 @@
208 where $h_{\min}$ is the minimum cell size of the mesh and
209 $C_{\mathrm{CFL}}$ is a chosen positive number.
210
211+\index{filtering}
212+
213 The basic idea of the filtering algorithm is to ensure that $\phi$
214 remains within the bounds $0 \leqslant \phi \leqslant 1$, and to minimize
215 dispersion error. We refer the reader to~\citet{LenardicKaula1993}
216@@ -528,6 +540,7 @@
217 with the time required for the assembly and solution of the linear
218 systems.
219 \item
220+ \index{Stokes equations!iterative linear solvers}
221 The linear systems resulting from the equations for the composition
222 and the temperature are positive definite but not symmetric. Hence,
223 these are solved iteratively using a standard generalized minimal
224@@ -922,6 +935,8 @@
225 captions to Figures~\ref{vynnytska:fig:BG} and~\ref{vynnytska:fig:HM}
226 for details.
227
228+\index{root-mean-square velocity}
229+
230 \begin{table}
231 \begin{tabular}{lccc}
232 \toprule
233
234=== modified file 'tex/36.tex'
235--- tex/36.tex 2011-10-17 16:09:26 +0000
236+++ tex/36.tex 2011-10-17 22:23:24 +0000
237@@ -1,4 +1,4 @@
238-\begingroup
239+b\begingroup
240 \fenicschapter{Automated testing of saddle point stability conditions}
241 {Automated testing of saddle point stability \\ conditions}
242 {Automated testing of saddle point stability conditions}
243@@ -15,6 +15,9 @@
244 \newcommand{\rognesascot}{ASCoT}
245 \newcommand{\rognespython}{Python}
246
247+\index{mixed finite element methods}
248+\index{discrete stability}
249+
250 Over the last five decades, there has been a substantial body of
251 research on the theory of mixed finite element methods. Mixed finite
252 element methods are finite element methods where two or more finite
253@@ -303,6 +306,8 @@
254
255 \subsection{Stability conditions for saddle point problems}
256
257+\index{saddle point problems}
258+
259 We now turn to consider the special case of abstract saddle point
260 problems. In this case, the stability
261 condition~\eqref{rognes:eq:infsup:discrete} can be rephrased in an
262@@ -823,6 +828,8 @@
263
264 \subsection{Mixed Laplacian}
265
266+\index{Poisson equation!mixed finite element discretization}
267+
268 We can now return to the mixed Laplacian example described in
269 Section~\ref{rognes:sec:motivation} and inspect the Brezzi stability
270 properties of the element spaces involved, namely
271@@ -967,6 +974,8 @@
272
273 \subsection{Stokes}
274
275+\index{Stokes equations!mixed finite element discretization}
276+
277 The Stokes equations is another classical and highly relevant saddle
278 point problem. For simplicity, we here consider the following discrete
279 formulation: find the velocity $u_h \in V_h$, and the pressure $p_h

Subscribers

People subscribed via source and target branches