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Preface

This mini-book attempts to provide a general introduction to the statistics side
of structural brain imaging, with a heavy emphasis on practical worked exam-
ples. It also introduces a particular toolkit, RMINC, designed to make running
these types of statistical analyses easier. It is targeted at the general user, who
may or may not have some statistical background, but does have some data
they want analysed in a straightforward way. It is not meant to be a complete
handbook on statistics, but hopefully will provide enough of a primer to get by,
at least for a little while.

This mini-book exists for a number of reasons. I have over the years been
asked multiple questions relating to structural brain imaging and statistics, and
have had the chance to learn answers to those questions from countless people.
This book thus exists as an attempt to put some of those answers down on
paper. Secondly, writing this book is part and parcel of the development of
RMINC; it is easier to write code useable by others if one documents it first,
and then writes code to fit the documentation.

The book will likely be an incomplete work in progress for a long while
yet. The IATEXsource for this book are packaged along with RMINC itself, and
contributors are most welcome!
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Chapter 1

Introduction

The process of analysing brain imaging data is typically comprised of a series
of stages. The study is designed with various choices made about the biology
question that is to be addressed and the data necessary to answer the questions
thus posed. Then the data is then acquired, and once that is completed, the
images are processed in various automatic, semi-automatic, or manual ways and
then analysed.

This book deals mainly with the final part, the data analysis, though there
will be several side-tracks into the other topics. A single example will be used
throughout: a mouse brain imaging study comparing two genotypes. The meth-
ods described herein should be easily transferable to any other structural imag-
ing study which looks at brain shape, tissue classification, or signal intensities.

1.1 Installing the tools

All the analyses will be performed using RMINC, which is a library designed to
handle MINC volumes inside the R statistical environment. All the tools needed
are freely available, and should run on just about any computer/operating sys-
tem. Installation and setup is described in some more detail below.

1.1.1 R

Quick background about R.
Installing R.
Where to find further reading.

1.1.2 MINC

Quick background about MINC.
Installing MINC.
Where to find more information.



1.1.3 RMINC

Quick background about RMINC.
Installing RMINC.

1.2 Overview of the analysis process

The data analysis process usually proceeds in the following way. First the input
images are assessed for correctness; any obvious processing errors are removed
from any subsequent analyses. The question of what constitutes an outlier is
often a tricky one. In order to avoid the temptation to manipulate the data in
a biased way it is best if the person who reviews the input data is blind about
the categorization of each particular dataset.

Once all the acceptable datasets are in place a series of descriptive statistics
can be generated, usually consisting of means and standard deviations of all im-
ages in the study as well as of all the subgroupings. This is followed by generating
statistical maps of the main variables of interest. These are then thresholded
for significance while taking multiple comparisons into account. There is then
often a series of steps in which new statistical models are analyzed and thresh-
olded until the results become more understandable. This usually involves lots
of plotting of individual datapoints.



Chapter 2

Preparing the data

This chapter will briefly discuss how to generate structural imaging data useable
for the statistical analyses described in the rest of the book.

2.1 Types of datasets

Describe what can be done.

2.1.1 Voxel based morphometry

Some more detail on VBM.

2.1.2 Deformation based morphometry

Some more detail on DBM.

2.1.3 Other

Mention cortical thickness, manual segmentation, etc.

2.2 Input data

Preparing the spreadsheet.

Reading study information into R.

Once the files have been processed, the easiest way to proceed is by settting
up a text file containing all the necessary information about each scan. This file
should be comma or space separated, have one row per scan, with each column
containing info about each scan. One of the columns should contain the filename
pointing to the MINC volumes to be processed. An example might look like the
following:



file,Genotype,scale

filenamel.mnc,+,0.98
filename2.mnc,-,0.91
filename3.mnc,-,0.92

Notice how the first row contains a header. This is optional, but makes later

access to the data easier and is therefore recommended.

The next step is to actually load this filename into R. The steps are given

below:

> library (RMINC)

> gf <- read.csv("control-file.glim")

The two library commands load the RMINC and xtable libraries into R.
xtable is only necessary for display purposes in this manual (which, by the way,
is being written using Sweave, a tool for combining R with latex). The variable
glim.file is then assigned the location of the input data file, which in turn is

read into the gf variable.

> xtable(gflc(1, 2, 3,

22, 23, 24), c(2, 4, 5, 6)], caption

Cage Genotype Internal.ID Weight..g.

1 1.00 - 475738.00 51.33
2 1.00 + 475740.00 39.54
3 200 - 475755.00 36.54
22 13.00 + 475959.00 39.36
23 13.00 - 475963.00 48.60

NA

Table 2.1: GLIM File

"GLIM File")

The little code fragment and table above just shows what a subset of the gf
variable looks like. To get a feel for the data and some of the RMINC functions,
the first file is then read and a histogram produced (for the curious, the files
used in this example actually consist of log Jacobians of deformation fields, not
voxel density maps usually used in VBM).



Chapter 3

Descriptive statistics

Introduction to what descriptive statistics are and what they are good for.
Group means and standard deviations.

> library(RMINC)
> overall.mean <- mincMean(gf$jacobians)

Method: mean
Number of volumes: 23
Volume sizes: 141 274 210
N GROUPS: 1.000000
In slice
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Done

> overall.mean

Multidimensional MINC volume
Columns:
[1] "/projects/mice/jlerch/frankland/tgf-beta/2007/tgf-beta_processed//img_23nov07.0.novembe

Writing to file.
> mincWriteVolume (overall.mean, "overall-mean.mnc')

Writing column 1 to file overall-mean.mnc
Sizes: 141 274 210
Range: 0.062284 -0.210842

Most often we are more interested in how the means break down by the
grouping in this dataset. This can be done by adding another variable to the
mincMean call:

> group.means <- mincMean(gf$jacobians, gf$Genotype)



Method: mean
Number of volumes: 23
Volume sizes: 141 274 210
N GROUPS: 2.000000
In slice
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 ¢
Done

> group.means

Multidimensional MINC volume
Columns: -+
[1] "/projects/mice/jlerch/frankland/tgf-beta/2007/tgf-beta_processed//img_23nov07.0.novembe

The Genotype variable has two levels in it: + and -. So it will take the mean
for all subjects in each group. These can then be written to file by specifiying
the column.

> mincWriteVolume (group.means, "groupl.mnc", "+")

Writing column + to file groupl.mnc
Sizes: 141 274 210
Range: 0.672118 -0.429721

> mincWriteVolume (group.means, "group2.mnc", "-")

Writing column - to file group2.mnc
Sizes: 141 274 210
Range: 0.351076 -1.169893

If the difference between the two columns is of interest, one can just subtract
the two data columns:

> difference <- group.means[, "+"] - group.means[, "-"]
> mean(difference)

[1] -0.002525745
> mincWriteVolume (difference, "diff.mnc", gf$jacobians[1])

Sizes: 141 274 210
Range: 1.838180 -0.780371

Notice how minc WriteVolume now needs a third argument: the name of a
minc-file which has the same dimensions as the data. By default commands such
as mincMean will store that information; after the subtraction above, however,
the result is just a series of numbers with all metadata removed, so it has to be
specified when writing the data to file.

Of course means are not the only items of interest. Also computable are
the standard-deviations, variances, and sums, as illustrated below. Just like
mincMean a column of filenames is required and a grouping variable is optional.



> v <- mincVar(gf$jacobians, gf$Genotype)

Method: var
Number of volumes: 23
Volume sizes: 141 274 210
N GROUPS: 2.000000
In slice
01 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Done

> s <- mincSd(gf$jacobians)

Method: var
Number of volumes: 23
Volume sizes: 141 274 210
N GROUPS: 1.000000
In slice
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Done

> 82 <- mincSum(gf$jacobians, gf$Genotype)

Method: sum
Number of volumes: 23
Volume sizes: 141 274 210
N GROUPS: 2.000000
In slice
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Done



Chapter 4

Linear Models

4.1 First linear model
> vs <- mincLm(jacobians ~ Genotype, gf)

Method: 1m
Number of volumes: 23
Volume sizes: 141 274 210
N: 23 P: 2
In slice
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 ¢
Done

> vs

Multidimensional MINC volume
Columns: F-statistic (Intercept) Genotype+
[1] "/projects/mice/jlerch/frankland/tgf-beta/2007/tgf-beta_processed//img_23nov07.0.novembe

> mincWriteVolume (vs, "simple-Ilm.mnc", "Genotype+")

Writing column Genotype+ to file simple-lm.mnc
Sizes: 141 274 210
Range: 19.596058 -18.206707

mincLm is the command to run linear models in RMINC. Its basic use is to
provide a formula (same syntax as the R 1m command) with the left side con-
taining the filenames, the right side the variables to be regressed. The output of
mincLm depends on the formula. There will always be a column of F-statistics,
representing the significance of the entire model. Then there is one column for
each of the terms in the mode. The above linear model, relating the Jacobian
determinant to Genotype, will thus have three columns:

F-statistic representing the significance of the entire model.
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(Intercept) the intercept term - this term is rarely interesting, as it tests for
whether the intercept is 0. There’s no reason to believe it should be in
most cases, so this value will be highly significant but meaningless.

Genotype+ the term testing whether the “4” level of the Genotype factor is
significant. In this case this term is the most interesting and therefore the
one written to file.

The output is placed into a variable that can be written to file in the same
way as described in the descriptive statistics section.

4.2 Plotting voxels

> options(show.signif.stars = FALSE)
> voxel <- mincGetVoxel(gf$jacobians, 0, 0, 0)
> summary(1lm(voxel ~ Genotype, gf))

Call:
lm(formula = voxel ~ Genotype, data = gf)

Residuals:
Min 1Q Median 3Q Max
-2.422e-05 -7.890e-06 4.447e-06 6.224e-06 1.351e-05

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 9.035e-06 3.728e-06 2.423 0.0245
Genotype+ -7.288e-06 5.162e-06 -1.412 0.1726

Residual standard error: 1.237e-05 on 21 degrees of freedom
Multiple R-Squared: 0.0867, Adjusted R-squared: 0.04321
F-statistic: 1.994 on 1 and 21 DF, p-value: 0.1726

> vsl[l, ]

F-statistic (Intercept) Genotype+
1.993651 2.423246  -1.411967

The code above does the following: it gets the voxel from coordinates 0,0,0
for all subjects, then computes a linear model relating that voxel to Genotype
using standard R functions. Lastly it prints the results from that same voxel as
computed by mincLm. This helps illustrate what the output of mincLm stores:
the F-statistic is the same as can be found in the last line of the summary
command, and the t-statistics for the Intercept and Genotype column can be
found under ”t-value” when using standard R functions.

mincGetVoxel needs three coordinates, given in voxel space in the same
order as stored in the file. Just printing the voxel will show the corresponding
world coordinates:
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> voxel

[1] 1.525891e-05 1.268326e-05 1.525891e-05 -1.518142e-05 1.525891e
[6] 1.525891e-05 1.332761e-05 1.109743e-05 -1.106965e-05 -1.242381e
[11] 5.798346e-06 1.525891e-05 -7.485501e-06 1.525891e-05 1.525891e
[16] 1.288196e-05 6.193524e-06 -1.648016e-05 1.525891e-05 1.525891e
[21] -5.299584e-07 -2.187095e-05 6.070320e-06

Voxel Coordinates: 0 0 O
World Coordinates: -6.27 -8.19 -4.2

If the coordinates are specified in world coordinates then mincGetWorldVoxel
is what you want - it also takes three coordinates, this time in world space in
xspace,yspace,zspace order:

> world.voxel <- mincGetWorldVoxel(gf$jacobians, -6.27, -8.19,
+ -4.2)
> world.voxel

[1] 1.525891e-05 1.268326e-05 1.525891e-05 -1.518142e-05 1.525891e
[6] 1.525891e-05 1.332761e-05 1.109743e-05 -1.106965e-05 -1.242381e
[11] 5.798346e-06 1.525891e-05 -7.485501e-06 1.525891e-05 1.525891e
[16] 1.288196e-05 6.193524e-06 -1.648016e-05 1.525891e-05 1.525891e

[21] -5.299584e-07 -2.187095e-05 6.070320e-06

Voxel Coordinates: 0 0 O
World Coordinates: -6.27 -8.19 -4.2

4.3 Using subsets

It is quite common to want to run a linear model on only a subset of the
data. This can be quite easily accomplished in mincLm using an extra subsetting
specification:

> vs <- mincLm(jacobians ~ Genotype, gf, Sex == "M")

Method: 1m
Number of volumes: 14
Volume sizes: 141 274 210
N: 14 P: 2
In slice
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Done

> vs
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Multidimensional MINC volume
Columns: F-statistic (Intercept) Genotype+

[1] "/projects/mice/jlerch/frankland/tgf-beta/2007/tgf-beta_processed//img_23nov07.0.novembe

This is the same linear model command as executed above, but this time

using only the male mice for the computation.

4.4 Multiple Comparisons

The example below illustrates the entire process involved in going running a
linear model and correcting for multiple comparisons using the False Discovery

Rate:
> vs <- mincLm(jacobians ~ Sex * Genotype, gf)

Method: 1m
Number of volumes: 23
Volume sizes: 141 274 210
N: 23 P: 4
In slice
01 2 3 4 5 6 7 8 9 10 11 12 13 14
Done

> qvals <- mincFDR(vs, mask = "mask.mnc")

Sizes: 141 274 210
Start: 0 0 0O
Count: 141 274 210

Computing FDR threshold for all columns
Computing threshold for F-statistic
Computing threshold for (Intercept)
Computing threshold for SexM
Computing threshold for Genotype+
Computing threshold for SexM:Genotype+

> gvals

Multidimensional MINC volume

156 16 17 18 19

Columns: F-statistic (Intercept) SexM Genotype+ SexM:Genotype+
[1] "/projects/mice/jlerch/frankland/tgf-beta/2007/tgf-beta_processed//img_23nov07.0.novembe

Degrees of Freedom: 3 19
FDR Thresholds:

F-statistic (Intercept) SexM Genotype+ SexM:Genotype+

0.01 4.0360423 3.773553 5.809281 3.193820
0.05  1.8909837 2.474292 4.637493 2.138480
0.1 1.0476866 1.945903 3.980688 1.622814

13

NaN
6.575371
5.902329

20 21 22 23 24



0.15  0.5447665 1.608717 3.502085 1.282796 5.615089
0.2 0.1244980 1.337898 3.089758 1.010200 5.381285

> mincWriteVolume(qvals, "Genotype-FDR.mnc", "Genotype+")

Writing column Genotype+ to file Genotype-FDR.mnc
Sizes: 141 274 210
Range: 1.000000 0.000008

The first command computes an ANOCA using mincLm. The results are
then passed on to mincFDR, which computes the False Discovery Rate threshold
separately for each of the terms in the linear model. Only results from within
the mask specified as an optional argument to mincFDR are considered. The
thresholds detected at different levels (0.01, 0.05, 0.10, 0.15, and 0.20) are then
printed out. The “Genotype+” column is then written to file.

14



Chapter 5

Bits and Pieces

5.1 Correlations
5.2 non-parametric statistics
5.3 mixed effects models

5.4 Cleaning up
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