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Preface

This mini-book attempts to provide a general introduction to the statistics side
of structural brain imaging, with a heavy emphasis on practical worked exam-
ples. It also introduces a particular toolkit, RMINC, designed to make running
these types of statistical analyses easier. It is targeted at the general user, who
may or may not have some statistical background, but does have some data
they want analysed in a straightforward way. It is not meant to be a complete
handbook on statistics, but hopefully will provide enough of a primer to get by,
at least for a little while.

This mini-book exists for a number of reasons. I have over the years been
asked multiple questions relating to structural brain imaging and statistics, and
have had the chance to learn answers to those questions from countless people.
This book thus exists as an attempt to put some of those answers down on
paper. Secondly, writing this book is part and parcel of the development of
RMINC; it is easier to write code useable by others if one documents it first,
and then writes code to fit the documentation.

The book will likely be an incomplete work in progress for a long while
yet. The LATEXsource for this book are packaged along with RMINC itself, and
contributors are most welcome!
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Chapter 1

Introduction

The process of analysing brain imaging data is typically comprised of a series
of stages. The study is designed with various choices made about the biology
question that is to be addressed and the data necessary to answer the questions
thus posed. Then the data is then acquired, and once that is completed, the
images are processed in various automatic, semi-automatic, or manual ways and
then analysed.

This book deals mainly with the final part, the data analysis, though there
will be several side-tracks into the other topics. A single example will be used
throughout: a mouse brain imaging study comparing two genotypes. The meth-
ods described herein should be easily transferable to any other structural imag-
ing study which looks at brain shape, tissue classification, or signal intensities.

1.1 Installing the tools

All the analyses will be performed using RMINC, which is a library designed to
handle MINC volumes inside the R statistical environment. All the tools needed
are freely available, and should run on just about any computer/operating sys-
tem. Installation and setup is described in some more detail below.

1.1.1 R

Quick background about R.
Installing R.
Where to find further reading.

1.1.2 MINC

Quick background about MINC.
In order for RMINC to work, the MINC libraries have to be compiled as

shared libraries. When configuring, make sure the following flag is added on:
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./configure --enable-shared=yes

Where to find more information.

1.1.3 RMINC

Quick background about RMINC.
Installing RMINC.

1.2 Overview of the analysis process

The data analysis process usually proceeds in the following way. First the input
images are assessed for correctness; any obvious processing errors are removed
from any subsequent analyses. The question of what constitutes an outlier is
often a tricky one. In order to avoid the temptation to manipulate the data in
a biased way it is best if the person who reviews the input data is blind about
the categorization of each particular dataset.

Once all the acceptable datasets are in place a series of descriptive statistics
can be generated, usually consisting of means and standard deviations of all im-
ages in the study as well as of all the subgroupings. This is followed by generating
statistical maps of the main variables of interest. These are then thresholded
for significance while taking multiple comparisons into account. There is then
often a series of steps in which new statistical models are analyzed and thresh-
olded until the results become more understandable. This usually involves lots
of plotting of individual datapoints.

1.3 Data used throughout this book

This book will consistently work with one dataset consisting of 5 male and 5
female C57Bl/6 mice, taken from a larger dataset published in a 2007 Neu-
roImage paper by Spring et al. The mice, all 12 weeks old, were scanned using
an overnight T2-weighted FSE sequence, then all aligned into a common space
using an automated image registration algorithm (i.e. deformation based mor-
phometry). The final metric of interest was then the Jacobian determinant of
the deformations needed to align each mouse to the final common atlas. These
details are relatively unimportant for this book - the input might as well be
voxel density maps from VBM - but at least it gives some background for those
who care. If you want to follow along with the examples used in this book you
can download the data at http://launchpad.net/rminc. Note that the data
has been downsampled to 120 micron voxels (from the original 32 micron voxels)
to keep the download within reasonable limits.
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Chapter 2

Preparing the data

This chapter will briefly discuss how to generate structural imaging data useable
for the statistical analyses described in the rest of the book.

2.1 Types of datasets

Describe what can be done.

2.1.1 Voxel based morphometry

Some more detail on VBM.

2.1.2 Deformation based morphometry

Some more detail on DBM.

2.1.3 Other

Mention cortical thickness, manual segmentation, etc.

2.2 Input data

Once the files have been processed, the easiest way to proceed is by settting up
a text file containing all the necessary information about each scan. This file
should be comma or space separated, have one row per scan, with each column
containing info about each scan. One of the columns should contain the filename
pointing to the MINC volumes to be processed. The example from the five male
and five female mice is the following:

Filename, Gender, coil, weight
volumes/img_08nov05.0-fwhm1.0.mnc,Female,1,22.6
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volumes/img_08nov05.1-fwhm1.0.mnc,Female,2,19.6
volumes/img_08nov05.2-fwhm1.0.mnc,Female,3,21.8
volumes/img_29sept05.0-fwhm1.0.mnc,Male,1,24.0
volumes/img_29sept05.2-fwhm1.0.mnc,Male,3,27.0
volumes/img_30sept05.0-fwhm1.0.mnc,Male,1,28.3
volumes/img_30sept05.1-fwhm1.0.mnc,Male,2,26.5
volumes/img_30sept05.2-fwhm1.0.mnc,Male,3,28.1
volumes/img_31oct05.0-fwhm1.0.mnc,Female,1,20.5
volumes/img_31oct05.2-fwhm1.0.mnc,Female,3,20.0

Notice how the first row contains a header. This is optional, but makes later
access to the data easier and is therefore recommended.

The next step is to actually load this file into R. The steps are given below:

> library(RMINC)

> gf <- read.csv("control-file.csv")

The library commands load the RMINC library into R. The next line then
reads the information describing this dataset from a comma-separated text file.
The basic syntax of an R command is a variable name - which can be whatever
you chose, within only a few limits - on the left hand side, the arrow (less than
followed by a dash) indicating an assignment, and then the function call (in this
case read.csv to read a comma separated value) with any arguments (in this
case the filename) in parentheses. Strings - such as the filename in this case -
are placed inside quotes.

> xtable(gf, caption = "GLIM File")

Filename Gender coil weight
1 volumes/img 08nov05.0-fwhm1.0.mnc Female 1.00 22.60
2 volumes/img 08nov05.1-fwhm1.0.mnc Female 2.00 19.60
3 volumes/img 08nov05.2-fwhm1.0.mnc Female 3.00 21.80
4 volumes/img 29sept05.0-fwhm1.0.mnc Male 1.00 24.00
5 volumes/img 29sept05.2-fwhm1.0.mnc Male 3.00 27.00
6 volumes/img 30sept05.0-fwhm1.0.mnc Male 1.00 28.30
7 volumes/img 30sept05.1-fwhm1.0.mnc Male 2.00 26.50
8 volumes/img 30sept05.2-fwhm1.0.mnc Male 3.00 28.10
9 volumes/img 31oct05.0-fwhm1.0.mnc Female 1.00 20.50

10 volumes/img 31oct05.2-fwhm1.0.mnc Female 3.00 20.00

Table 2.1: GLIM File

The little code fragment and table above just shows what the gf variable
looks like after being read into R1

1xtable is only necessary for display purposes in this manual (which, by the way, is being
written using Sweave, a tool for combining R with latex).
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Chapter 3

Descriptive statistics

Before going into explicit hypothesis tests it is often useful to get a general feel
for what the data looks like - this is where descriptive statistics come in. The
most common functions include computing the mean and variance or standard
deviation at every voxel. If the data is inherently divided into groups, such as
patients and control, or, in our example dataset, males versus females, then the
descriptive stats can also be grouped by those variables.

To start we can look at the mean Jacobian determinant at every voxel of all
the data combined:

> library(RMINC)

> overall.mean <- mincMean(gf$Filename)

Method: mean
Number of volumes: 10
Volume sizes: 71 137 105
N GROUPS: 1.000000
In slice
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...
Done

> overall.mean

Multidimensional MINC volume
Columns:
[1] "volumes/img_08nov05.0-fwhm1.0.mnc"

The mincMean function computes the mean at every voxel of a set of file-
names specified as an argument. The output is in this case assigned to the
overall.mean variable. Repeating the variable in the R session, as done above,
causes a summary to be printed.

One thing to note about the R syntax above: the dollar symbol is used to
access a specific column inside a data frame. What this means is that inside
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the gf variable - which, remember, is the variable that was read in from the
comma-separated values file which describes the dataset - each column has a
name which can be accessed by that dollar variable. Here are some examples,
first showing the entire contents of gf and then two separate columns alone:

> gf

Filename Gender coil weight
1 volumes/img_08nov05.0-fwhm1.0.mnc Female 1 22.6
2 volumes/img_08nov05.1-fwhm1.0.mnc Female 2 19.6
3 volumes/img_08nov05.2-fwhm1.0.mnc Female 3 21.8
4 volumes/img_29sept05.0-fwhm1.0.mnc Male 1 24.0
5 volumes/img_29sept05.2-fwhm1.0.mnc Male 3 27.0
6 volumes/img_30sept05.0-fwhm1.0.mnc Male 1 28.3
7 volumes/img_30sept05.1-fwhm1.0.mnc Male 2 26.5
8 volumes/img_30sept05.2-fwhm1.0.mnc Male 3 28.1
9 volumes/img_31oct05.0-fwhm1.0.mnc Female 1 20.5
10 volumes/img_31oct05.2-fwhm1.0.mnc Female 3 20.0

> gf$Filename

[1] volumes/img_08nov05.0-fwhm1.0.mnc volumes/img_08nov05.1-fwhm1.0.mnc
[3] volumes/img_08nov05.2-fwhm1.0.mnc volumes/img_29sept05.0-fwhm1.0.mnc
[5] volumes/img_29sept05.2-fwhm1.0.mnc volumes/img_30sept05.0-fwhm1.0.mnc
[7] volumes/img_30sept05.1-fwhm1.0.mnc volumes/img_30sept05.2-fwhm1.0.mnc
[9] volumes/img_31oct05.0-fwhm1.0.mnc volumes/img_31oct05.2-fwhm1.0.mnc
10 Levels: volumes/img_08nov05.0-fwhm1.0.mnc ...

> gf$Gender

[1] Female Female Female Male Male Male Male Male Female Female
Levels: Female Male

So if, in the text file that describes the dataset, the column containing all
the filenames was called “jacobians”, then the mincMean command would have
been mincMean(gf$jacobians).

If an incorrect column is specified - i.e. something which does not contain
filenames - then you should receive an error.

3.1 Writing results to file

Once the means at every voxel have been computed, they can be written to file.
This is done with command below:

> mincWriteVolume(overall.mean, "overall-mean.mnc")

Writing column 1 to file overall-mean.mnc
Sizes: 71 137 105
Range: 0.084176 -0.108390
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The mincWriteVolume command takes two arguments in the above example
- the variable containing the data, and a string giving the filename to which the
data should be written to. This MINC file can then be read and viewed with
the standard MINC tools such as mincinfo, register, Display, etc.

3.2 Creating summaries by group

Most often we are more interested in how the means break down by the grouping
in this dataset. This can be done by adding another variable to the mincMean
call:

> group.means <- mincMean(gf$Filename, gf$Gender)

Method: mean
Number of volumes: 10
Volume sizes: 71 137 105
N GROUPS: 2.000000
In slice
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...
Done

> group.means

Multidimensional MINC volume
Columns: Female Male
[1] "volumes/img_08nov05.0-fwhm1.0.mnc"

The Gender variable has two levels in it: Male and Female. So it will take
the mean for all subjects in each group. These can then be written to file by
specifiying the column.

> mincWriteVolume(group.means, "male-mean.mnc", "Male")

Writing column Male to file male-mean.mnc
Sizes: 71 137 105
Range: 0.109804 -0.148817

> mincWriteVolume(group.means, "female-mean.mnc", "Female")

Writing column Female to file female-mean.mnc
Sizes: 71 137 105
Range: 0.193389 -0.174766

If the difference between the two columns is of interest, one can just subtract
the two data columns:

> difference <- group.means[, "Male"] - group.means[, "Female"]

> mean(difference)
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[1] -0.0002146645

> mincWriteVolume(difference, "diff.mnc", gf$Filename[1])

Sizes: 71 137 105
Range: 0.243403 -0.250164

Notice how mincWriteVolume now needs a third argument: the name of a
minc-file which has the same dimensions as the data. By default commands such
as mincMean will store that information; after the subtraction above, however,
the result is just a series of numbers with all metadata removed, so it has to be
specified when writing the data to file.

Of course means are not the only items of interest. Also computable are
the standard-deviations, variances, and sums, as illustrated below. Just like
mincMean a column of filenames is required and a grouping variable is optional.

> v <- mincVar(gf$Filename, gf$Gender)

Method: var
Number of volumes: 10
Volume sizes: 71 137 105
N GROUPS: 2.000000
In slice
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...
Done

> s <- mincSd(gf$Filename)

Method: var
Number of volumes: 10
Volume sizes: 71 137 105
N GROUPS: 1.000000
In slice
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...
Done

> s2 <- mincSum(gf$Filename, gf$Gender)

Method: sum
Number of volumes: 10
Volume sizes: 71 137 105
N GROUPS: 2.000000
In slice
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...
Done
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Chapter 4

Linear Models

Linear models represent the mainstay of structural brain imaging. Their essence
is quite simple: the data at every voxel is modelled by a set of terms correspond-
ing to extra information about each scan. One can then perform hypothesis tests
on each linear model to calculate the significance of either the entire model or
even the marginal significance of each term in the model. This can be used
to ask the question of, for example, in which voxels the gender of the subject
predicts the values at that voxel.

This approach is also known as massively univariate statistics - i.e. a separate
linear model is calculated at every voxel, resulting in thousands or even millions
of separate models for every statistical test applied to the images. The last
step in analysing such data is thus often to account for these thousands of
comparisons so that the results do not occur just by random chance.

4.1 First linear model

Let’s start with a simple linear model - lets see where the Jacobian determinants
contained in the files used in the male-female dataset are best modelled by the
gender of the mouse.

> vs <- mincLm(Filename ~ Gender, gf)

Method: lm
Number of volumes: 10
Volume sizes: 71 137 105
N: 10 P: 2
In slice
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...
Done

> vs
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Multidimensional MINC volume
Columns: F-statistic (Intercept) GenderMale
[1] "volumes/img_08nov05.0-fwhm1.0.mnc"

> mincWriteVolume(vs, "simple-lm.mnc", "GenderMale")

Writing column GenderMale to file simple-lm.mnc
Sizes: 71 137 105
Range: 9.581574 -8.354640

mincLm is the command to run linear models in RMINC. Its basic use is to
provide a formula (same syntax as the R lm command) with the left side con-
taining the filenames, the right side the variables to be regressed. The output of
mincLm depends on the formula. There will always be a column of F-statistics,
representing the significance of the entire model. Then there is one column for
each of the terms in the mode. The above linear model, relating the Jacobian
determinant to gender, will thus have three columns:

F-statistic representing the significance of the entire model.

(Intercept) the intercept term - this term is rarely interesting, as it tests for
whether the intercept is 0. There’s no reason to believe it should be in
most cases, so this value will be highly significant but meaningless.

GenderMale the term testing whether the “Male” level of the Gender factor
is significant. In this case this term is the most interesting and therefore
the one written to file.

The output is placed into a variable that can be written to file in the same
way as described in the descriptive statistics section.

4.2 Plotting voxels

> options(show.signif.stars = FALSE)

> voxel <- mincGetVoxel(gf$Filename, 44, 20, 52)

> summary(lm(voxel ~ Gender, gf))

Call:
lm(formula = voxel ~ Gender, data = gf)

Residuals:
Min 1Q Median 3Q Max

-0.13849 -0.04947 0.01240 0.04120 0.11775

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.01900 0.03443 0.552 0.596
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GenderMale -0.08765 0.04869 -1.800 0.110

Residual standard error: 0.07699 on 8 degrees of freedom
Multiple R-Squared: 0.2883, Adjusted R-squared: 0.1993
F-statistic: 3.241 on 1 and 8 DF, p-value: 0.1095

> vs[635093, ]

F-statistic (Intercept) GenderMale
3.2408617 0.5517272 -1.8002394

The code above does the following: it gets the voxel from coordinates 44, 20,
52 for all subjects, then computes a linear model relating that voxel to Genotype
using standard R functions. Lastly it prints the results from that same voxel as
computed by mincLm1. This helps illustrate what the output of mincLm stores:
the F-statistic is the same as can be found in the last line of the summary
command, and the t-statistics for the Intercept and Genotype column can be
found under ”t-value” when using standard R functions.

mincGetVoxel needs three coordinates, given in voxel space in the same
order as stored in the file. Just printing the voxel will show the corresponding
world coordinates:

> voxel

[1] 0.13674168 0.04150733 0.07639956 -0.03271777 -0.12701763 -0.06638037
[7] -0.09147905 -0.02570000 -0.04017891 -0.11949146

Voxel Coordinates: 44 20 52
World Coordinates: -0.03 -5.79 1.08

If the coordinates are specified in world coordinates then mincGetWorldVoxel
is what you want - it also takes three coordinates, this time in world space in
xspace,yspace,zspace order:

> world.voxel <- mincGetWorldVoxel(gf$Filename, -6.27, -8.19, -4.2)

> world.voxel

[1] 1.525891e-05 1.525891e-05 1.525891e-05 1.525891e-05 1.525891e-05
[6] 1.525891e-05 1.525891e-05 1.525891e-05 1.525891e-05 1.525891e-05

Voxel Coordinates: 0 0 0
World Coordinates: -6.27 -8.19 -4.2

1The actual number indexed here - 635093 - might appear odd. RMINC treats all MINC
volumes as 1-dimensional arrays, so the actual index has to be computed by the following
formula: (index1 ∗ size2 + index2) + size3 + index3
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Figure 4.1: Ray-traced slice
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4.3 Creating images

RMINC has the ability to call ray trace to create images of individual slices
corresponding to a specific voxel. For this to work ray trace2 has to be installed
and present in the path, as does MICe-minc-tools3.

An example is given below - this will create an image of the slice correspond-
ing to the voxel location along with a cross-hair over that voxel. The output
can be seen in figure 4.1, along with a box-and-whiskers plot of the data at that
voxel.

> mincRayTraceStats(voxel, "volumes/anatomy.mnc", vs, "GenderMale",

+ image.min = 350000, image.max = 1e+06, display = F)

Sizes: 71 137 105
Range: 9.581574 -8.354640

The mincRayTraceStats function needs the following arguments: a voxel,
obtained by mincGetVoxel or mincGetWorldVoxel, the path towards a MINC
image containing some background anatomy, the output of mincLm (vs in this
case), and minimum and maximum values of the background anatomy.

4.4 Using subsets

It is quite common to want to run a linear model on only a subset of the
data. This can be quite easily accomplished in mincLm using an extra subsetting
specification:

2http://packages.bic.mni.mcgill.ca
3http://wiki.phenogenomics.ca:8080/display/MICePub/MICe-minc-tools
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> vs <- mincLm(Filename ~ Gender, gf, coil == 1)

Method: lm
Number of volumes: 4
Volume sizes: 71 137 105
N: 4 P: 2
In slice
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...
Done

> vs

Multidimensional MINC volume
Columns: F-statistic (Intercept) GenderMale
[1] "volumes/img_08nov05.0-fwhm1.0.mnc"

This is the same linear model command as executed above, but this time
using only use mice scanned on RF coil number 1. The subset command works
exactly the same way as for the standard lm command from R.

4.5 Multiple Comparisons

The example below illustrates the entire process involved in going running a
linear model and correcting for multiple comparisons using the False Discovery
Rate:

> vs <- mincLm(Filename ~ Gender, gf)

Method: lm
Number of volumes: 10
Volume sizes: 71 137 105
N: 10 P: 2
In slice
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...
Done

> qvals <- mincFDR(vs, mask = "volumes/mask.mnc", method = "pFDR")

Computing FDR threshold for all columns
Sizes: 71 137 105
Start: 0 0 0
Count: 71 137 105
Computing threshold for F-statistic
Computing threshold for (Intercept)
Computing threshold for GenderMale

> qvals
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Multidimensional MINC volume
Columns: F-statistic (Intercept) GenderMale
[1] "volumes/img_08nov05.0-fwhm1.0.mnc"
Degrees of Freedom: 1 8
FDR Thresholds:

F-statistic (Intercept) GenderMale
0.01 NaN NaN NaN
0.05 NaN NaN NaN
0.1 NaN NaN NaN
0.15 8.775918 NaN 2.962418
0.2 5.352080 NaN 2.313456

> mincWriteVolume(qvals, "Gender-FDR.mnc", "GenderMale")

Writing column GenderMale to file Gender-FDR.mnc
Sizes: 71 137 105
Range: 1.000000 0.119666

The first command computes a linear model using mincLm. The results are
then passed on to mincFDR, which computes the False Discovery Rate threshold
separately for each of the terms in the linear model. Only results from within
the mask specified as an optional argument to mincFDR are considered. The
thresholds detected at different levels (0.01, 0.05, 0.10, 0.15, and 0.20) are then
printed out. In this example seen above there is no data at a FDR level of 0.01,
0.05, or 0.10, but any t-statistic greater than 2.96 (or less than -2.96) would
be significant at a 15% false positive level - i.e. 15% of the voxels above that
threshold would be, on average, false positives. The “GenderMale” column is
then written to file. Note that we use the positive false discovery rate above -
the more standard false discovery rate is the default (i.e. if no method argument
is specified for mincFDR)
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Chapter 5

Bits and Pieces

5.1 Correlations

5.2 non-parametric statistics

5.3 mixed effects models

5.4 Cleaning up
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Chapter 6

Advanced Topics

6.1 Running arbitrary R functions

RMINC has the capacity to run arbitrary R functions at ever voxel of a set of
files. This comes in quite handy when there are no easily wrapped functions
that exist in RMINC but there is some existing R module you would like to try
out. Some words of caution are in order, however:

� Running arbitrary functions involves writing your own small R function
to wrap the code you want to use, which is a bit ugly.

� It is slow. Slower than molasses on a cold Georgia winter morning.

Here’s an example of how it works:
The code above has two parts. The first is creating the function, which has

the following properties:

� It takes no arguments.

� It works on the variable x. This function will be evaluated at every voxel,
where x will be a vector containing the values at that voxel for all the files.

� It returns a vector.
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